Theory Overview: Searching for the Second Higgs

Nathaniel Craig
UC Santa Barbara

The Second Higgs

Additional Higgs scalars often arise in natural theories of EWSB:

- Higgs sector of the MSSM/NMSSM...
- Little Higgs, Composite Higgs...
- Twin Higgs, Neutral Naturalness...

More broadly:

The spin-1/2 and spin-1 sectors of our universe are rich in multiplicity.

Why not also the spin-0 sector?

Why 2HDM?

Add another scalar (w/ vev) to the SM...

Indirect signals of a $\mbox{doublet} \colon \ \mathcal{O}\left(\frac{v^2}{M^2}\right)$ Higgs coupling deviations

5% precision

M ≥ 1 TeV

Indirect signals of **higher reps**: $\mathcal{O}\left(\frac{v^2}{M^2}\right)$ rho parameter (w/o tuning)

.02% precision

M ≥ 17 TeV

Where 2HDM?

Generically, mass scale of second Higgs only constrained by distribution of vev; can naturally be (reasonably) asymmetric.

E.g. SUSY:

$$\Delta \approx \sin^2(2\beta) \frac{m_H^2}{m_h^2} + \mathcal{O}(m_H^0)$$

At large tanβ, suppressed tuning:

$$\Delta(\tan\beta = 50) \le 1 \to m_H \lesssim 3.1 \text{ TeV}$$

Multi-TeV Higgs states consistent with naturalness in this framework. Not feasible @ 14 TeV, but within reach of 100 TeV.

Simplified parameter space

Physical d.o.f. are (8-3=5): h, H, A, H^{\pm}

After EWSB, 9 free params in CP-conserving potential.

Useful basis of 4 physical masses, 2 angles, 3 couplings:

$$m_h, m_H, m_A, m_{H^{\pm}} \qquad \tan \beta \equiv \langle \Phi_2 \rangle / \langle \Phi_1 \rangle$$

$$\alpha: \begin{pmatrix} \sqrt{2} \operatorname{Re}(\Phi_2^0) - v_2 \\ \sqrt{2} \operatorname{Re}(\Phi_1^0) - v_1 \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h \\ H \end{pmatrix}$$

 $\lambda_5, \lambda_6, \lambda_7$ (only appear in trilinear couplings)

Couplings of scalars to fermions, vectors only depend on angles.

Discrete symm. for flavor: $\lambda_{6,7}=0$ MSSM: $\lambda_{5,6,7}=0$

Alignment limit

- Couplings of the observed Higgs so far approximately SM-like.
- Suggests proximity to alignment limit

$$\alpha \approx \beta - \pi/2$$

- In this limit, h is fluctuation around the vev, remaining scalars are spectators to EWSB
- (Achievable via decoupling in mass or accidentally, via dimensionless couplings)
- Useful to expand in

$$\delta = \beta - \alpha - \pi/2$$
$$\approx -\cos(\beta - \alpha)$$

[Haber, Gunion '02; NC, Thomas '12; NC, Galloway, Thomas '13; Carena, Low, Shah, Wagner '13]

Four discrete 2HDM types. All couplings to SM states fixed in terms of two angles.

	2HDM I	2HDM II	2HDM III	2HDM IV
u	Φ_2	Φ_2	Φ_2	Φ_2
$\mid d \mid$	Φ_2	Φ_1	Φ_2	Φ_1
e	Φ_2	Φ_1	Φ_1	Φ_2

$y_{ m 2HDM}/y_{ m SM}$	2HDM 1	2HDM 2
hVV	$1-\delta^2/2$	$1-\delta^2/2$
hQu	$1 - \delta/t_{eta}$	$1 - \delta/t_{eta}$
hQd	$1 - \delta/t_{eta}$	$1 + \delta t_{\beta}$
hLe	$1-\delta/t_{\beta}$	$1 + \delta t_{\beta}$
HVV	$-\delta$	$-\delta$
HQu	$-\delta - 1/t_{\beta}$	$-\delta - 1/t_{\beta}$
HQd	$-\delta - 1/t_{\beta}$	$-\delta + t_{\beta}$
HLe	$-\delta - 1/t_{\beta}$	$-\delta + t_{\beta}$
AVV	0	0
AQu	$1/t_{eta}$	$1/t_{eta}$
AQd	$-1/t_{eta}$	t_{eta}
ALe	$-1/t_{\beta}$	t_{eta}

$$\delta = \beta - \alpha - \pi/2$$

- Scalar self-couplings have additional parametric freedom.
- Gives a map between current fits to the Higgs couplings and the possible size of NP signals.
- H, A are similar d.o.f. in alignment limit; H+ couplings analogous to A.
- Focus on the two most familiar, Types 1 and 2.
- Work at tree level, but loops matter [e.g. Chen, Han, Su, Su, Wu '18]

Complementarity

Indirect:

Measure h(125)

$y_{2\mathrm{HDM}}/y_{\mathrm{SM}}$	2HDM 1	2HDM 2
hVV	$1 - \delta^2/2$	$1 - \delta^2/2$
hQu	$1 - \delta/t_{eta}$	$1 - \delta/t_{eta}$
hQd	$1 - \delta/t_{eta}$	$1 + \delta t_{\beta}$
hLe	$1 - \delta/t_{\beta}$	$1 + \delta t_{\beta}$
HVV	$-\delta$	$-\delta$
HQu	$-\delta - 1/t_{\beta}$	$-\delta - 1/t_{eta}$
HQd	$-\delta - 1/t_{\beta}$	$-\delta + t_{eta}$
HLe	$-\delta - 1/t_{\beta}$	$-\delta + t_{\beta}$
AVV	0	0
AQu	$1/t_{eta}$	$1/t_{eta}$
AQd	$-1/t_{\beta}$	t_{eta}
ALe	$-1/t_{\beta}$	t_{eta}

Direct:

Search for H/A/H±

Indirect: Where now?

Indirect: Whither?

[Barger, Everett, Logan, Shaughnessy '13]

Indirect: Whither?

[Gu, Li, Liu, Su, Su 1709.06103]

See also: [Chen, Han, Su, Su, Wu '18, ibid + Li '19]

Direct: Where now?

hMSSM for illustration

Direct: Whither?

Direct: Whither?

Where's the signal?

High tanβ dominated by hh, Zh, VV, tt

Low tanß dominated by tt, hh, Zh, still some distance from alignment

Where's the signal?

TYPE 2: $\sigma \cdot \text{Br}(gg \rightarrow H \rightarrow X), \sqrt{s} = 100 \text{ TeV}, \tan \beta = 2, \cos(\beta - \alpha) = -0.01$ 100 10 $\tau\tau$ σ -Br (pb) WW ZZgg 0.1 $\gamma\gamma$ 0.01 0.001 800 200 400 600 1000 M_H (GeV)

High tanβ dominated by bb, ττ, as expected from MSSM

Low tanß dominated by tt, bb; vectors suppressed by alignment

What's the problem?

[Gaemers, Hoogeveen '84; Dicus, Stange, Willenbrock '94; Barger, Han, Walker '06; NC, F. D'Eramo, P. Draper, S. Thomas, H. Zhang '15; Gori, Kim, Shah, Zurek '16; Hespel, Maltoni, Vryonidou '16; Czakon, Heymes, Mitov '16,...]

Spin-0 resonance decaying to tt interferes w/ SM tt

What's being done?

Where to go?

More generally

Production channels (for 2HDM) in the alignment limit

Single Heavy Higgs Strong Production	$\mathcal{O}(g_s^4\lambda_f^2)$	gg o H , A
Single Heavy Higgs Associated Strong Production	$\mathcal{O}(g_s^4\lambda_f^2)$	$gg \rightarrow bbH$, bbA , tbH^{\pm} , ttH , ttA
Single Heavy Higgs Associated Weak Production	$\mathcal{O}(g_s^2g_w^4\lambda_f^2)$	$gq \rightarrow bq' bH^{\pm}, bq tH, bq tA$
Double Heavy Higgs Weak Production	$\mathcal{O}(g_w^4)$	$q\bar{q} \to HA , HH^{\pm} , AH^{\pm} , H^{+}\!H^{-}$
Light + Heavy Higgs Strong Production	$\mathcal{O}(g_s^4 \lambda_f^4)$	$gg \to hH , hA$
Double Heavy Higgs Strong Production	$\mathcal{O}(g_s^4 \lambda_f^4)$	$gg \rightarrow HH$, HA , AA , H^+H^-

Heavy Higgs Cascades

Distinctive single modes may have small production rates (e.g. H±)

Dominant single modes may be hard to see (e.g. $gg \rightarrow H/A \rightarrow tt$)

Multi-mode cascades provide an opportunity (e.g. gg → H → WH±)

Organizing principle: alignment limit.

Many multi-Higgs couplings vanish in this limit; focus on non-vanishing couplings

Multi-Higgs Couplings in the alignment limit:

- hHH
- hAA
- HHH
- \bullet HAA
- HH⁺H[−]
- *ZAH*
- HW[±]H[∓]
- $\bullet AW^{\pm}H^{\mp}$

Snowmass 2021

- 2HDM are a key benchmark for future colliders, Snowmass!
- Continue exploring indirect constraints on 2HDM from Higgs factories using state-of-the-art coupling projections.
- Significant room to improve forecasting for sensitivity to tt final states at pp machines, both in ggH and ttH.
- Significant opportunities in other associated production modes, Higgs cascades.
- Challenges for pp machines largely avoided by high center-of-mass lepton colliders. Muon collider, anyone?

Thank you!